MA26500: SAMPLE EXAM II

- 1. The subspace of \mathbb{R}^3 spanned by $\{(1,2,3),(1,3,5),(1,5,k)\}$ has dimension 3 if
 - A. $k \neq 1$
 - B. $k \neq 9$
 - C. k = 0
 - D. k = 1
 - E. k = 9

- **2.** Consider the the vectors $v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 3 \\ 1 \\ 7 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 5 \\ -3 \\ 9 \\ 1 \end{bmatrix}$, and $v_4 = \begin{bmatrix} -2 \\ 4 \\ 2 \\ 8 \end{bmatrix}$. The dimension of the space span $\{v_1, v_2, v_3, v_4\}$ is then equal to
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

3. The subset $S = \{A \in M_3(\mathbb{R}^3) : A^T = -A\}$ of the space of 3×3 matrices with real elements is a vector space such that

A. dim
$$S=2$$
 and a basis for S is $\left\{ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \right\}$
B. dim $S=2$ and a basis for S is $\left\{ \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \right\}$
C. dim $S=3$ and a basis for S is $\left\{ \begin{bmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 & 0 \\ 2 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix} \right\}$
D. dim $S=3$ and a basis for S is $\left\{ \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{bmatrix} \right\}$

E. None of the above.

- 4. Suppose that the $n \times n$ matrix A is invertible. Which of the following statements are true?
 - (i) The reduced row echelon form of A is I_n
 - (ii) $\det A = 0$
 - (iii) The row space of A is \mathbb{R}^n .
 - (iv) The column vectors of A are linearly dependent.
 - (v) For every vector $b \in \mathbb{R}^n$, the system Ax = b has a unique solution.
 - A. (i), (ii), (iii)
 - B. (iii), (iv), (v)
 - C. (ii), (iv)
 - D. (i), (iii), (iv)
 - E. (i), (iii), (v)

5. Consider the following inconsistent linear system Ax = b, where

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 3 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

The *least squares* solution of the linear system is

A.
$$\hat{x} = \begin{bmatrix} 1\\ 1/7 \end{bmatrix}$$

B. $\hat{x} = \begin{bmatrix} 1/7\\ 0 \end{bmatrix}$
C. $\hat{x} = \begin{bmatrix} 1/7\\ 1/7 \end{bmatrix}$
D. $\hat{x} = \begin{bmatrix} -1\\ 1/7 \end{bmatrix}$
E. $\hat{x} = \begin{bmatrix} 0\\ -1/7 \end{bmatrix}$

- 6. Let $x, y \in \mathbb{R}^2$ be two vectors, satisfying the following properties:
 - (i) $x \cdot y = 0$.
 - (ii) ||x|| = 2 and ||y|| = 1.

Then, for real numbers a, b, what is the expression for $||ax + by||^2$?

- A. $a^2 + b^2$
- B. $2a^2 + b^2$
- C. $4a^2 + b^2$
- D. $4a^2 + 4ab + b^2$
- E. $a^2 + 4ab + b^2$

7. Let

$$v_1 = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 & -2 & 1 \end{bmatrix}$$

be vectors in \mathbb{R}^3 with the standard inner product. Let W be the subspace of \mathbb{R}^3 spanned by $\{v_1, v_2\}$. A basis for W^{\perp} is

A. $\begin{bmatrix} 0 & -1 & 3 \end{bmatrix}$ B. $\begin{bmatrix} 5 & -2 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 1 & 3 & 1 \end{bmatrix}, \begin{bmatrix} -1 & -2 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 4 & -1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ E. $\begin{bmatrix} -2 & 1 & -1 \end{bmatrix}, \begin{bmatrix} 3 & -1 & 1 \end{bmatrix}$ 8. Given the set of linearly independent vectors in \mathbb{R}^3 with the standard inner product

$$u_1 = \begin{bmatrix} 1\\2\\-2 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3\\2\\-1 \end{bmatrix}.$$

Use the Gram Schmidt process to turn it into an orthonromal basis $\{w_1, w_2\}$. We have

A.
$$w_1 = \begin{bmatrix} 1\\ 2\\ -2 \end{bmatrix}$$
, $w_2 = \begin{bmatrix} 4\\ 4\\ -3 \end{bmatrix}$
B. $w_1 = \begin{bmatrix} 1/3\\ 2/3\\ -2/3 \end{bmatrix}$, $w_2 = \begin{bmatrix} 0\\ 1/\sqrt{2}\\ 1/\sqrt{2} \end{bmatrix}$
C. $w_1 = \begin{bmatrix} 1/3\\ 2/3\\ -2/3 \end{bmatrix}$, $w_2 = \begin{bmatrix} 2/\sqrt{5}\\ 0\\ 1/\sqrt{5} \end{bmatrix}$
D. $w_1 = \begin{bmatrix} 1/3\\ 2/3\\ -2/3 \end{bmatrix}$, $w_2 = \begin{bmatrix} 3/\sqrt{14}\\ 2/\sqrt{14}\\ -1/\sqrt{14} \end{bmatrix}$
E. $w_1 = \begin{bmatrix} 1/3\\ 2/3\\ -2/3 \end{bmatrix}$, $w_2 = \begin{bmatrix} 2/\sqrt{13}\\ 0\\ -3/\sqrt{13} \end{bmatrix}$

- **9.** Determine all values of k such that the vectors (1, -1, 0), (1, 2, 2), (0, 3, k) are a basis for \mathbb{R}^3 .
 - A. k = 1
 - B. k = 2
 - C. $k \neq 2$
 - D. $k \neq 1$
 - E. $k \neq 3$

