MA26500: SAMPLE EXAM II

NAME:

1. The subspace of \mathbb{R}^{3} spanned by $\{(1,2,3),(1,3,5),(1,5, k)\}$ has dimension 3 if
A. $k \neq 1$
B. $k \neq 9$
C. $k=0$
D. $k=1$
E. $k=9$
2. Consider the the vectors $v_{1}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}3 \\ 1 \\ 7 \\ 3\end{array}\right], v_{3}=\left[\begin{array}{c}5 \\ -3 \\ 9 \\ 1\end{array}\right]$, and $v_{4}=\left[\begin{array}{c}-2 \\ 4 \\ 2 \\ 8\end{array}\right]$. The dimension
of the space $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is then equal to
A. 1
B. 2
C. 3
D. 4
E. 5
3. The subset $S=\left\{A \in M_{3}\left(\mathbb{R}^{3}\right): A^{T}=-A\right\}$ of the space of 3×3 matrices with real elements is a vector space such that
A. $\operatorname{dim} S=2$ and a basis for S is $\left\{\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right]\right\}$
B. $\operatorname{dim} S=2$ and a basis for S is $\left\{\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]\right\}$
C. $\operatorname{dim} S=3$ and a basis for S is $\left\{\left[\begin{array}{ccc}0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & -1 \\ 1 & 1 & 0\end{array}\right],\left[\begin{array}{ccc}0 & -2 & 0 \\ 2 & 0 & 2 \\ 0 & -2 & 0\end{array}\right]\right\}$
D. $\operatorname{dim} S=3$ and a basis for S is $\left\{\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0\end{array}\right]\right\}$
E. None of the above.
4. Suppose that the $n \times n$ matrix A is invertible. Which of the following statements are true?
(i) The reduced row echelon form of A is I_{n}
(ii) $\operatorname{det} A=0$
(iii) The row space of A is \mathbb{R}^{n}.
(iv) The column vectors of A are linearly dependent.
(v) For every vector $b \in \mathbb{R}^{n}$, the system $A x=b$ has a unique solution.
A. (i), (ii), (iii)
B. (iii), (iv), (v)
C. (ii), (iv)
D. (i), (iii), (iv)
E. (i), (iii), (v)
5. Consider the following inconsistent linear system $A x=b$, where

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2 \\
3 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

The least squares solution of the linear system is
A. $\hat{x}=\left[\begin{array}{c}1 \\ 1 / 7\end{array}\right]$
B. $\hat{x}=\left[\begin{array}{c}1 / 7 \\ 0\end{array}\right]$
C. $\hat{x}=\left[\begin{array}{l}1 / 7 \\ 1 / 7\end{array}\right]$
D. $\hat{x}=\left[\begin{array}{c}-1 \\ 1 / 7\end{array}\right]$
E. $\quad \hat{x}=\left[\begin{array}{c}0 \\ -1 / 7\end{array}\right]$
6. Let $x, y \in \mathbb{R}^{2}$ be two vectors, satisfying the following properties:
(i) $x \cdot y=0$.
(ii) $\|x\|=2$ and $\|y\|=1$.

Then, for real numbers a, b, what is the expression for $\|a x+b y\|^{2}$?
A. $a^{2}+b^{2}$
B. $2 a^{2}+b^{2}$
C. $4 a^{2}+b^{2}$
D. $4 a^{2}+4 a b+b^{2}$
E. $a^{2}+4 a b+b^{2}$
7. Let

$$
v_{1}=\left[\begin{array}{lll}
1 & 3 & 1
\end{array}\right], \quad v_{2}=\left[\begin{array}{lll}
-1 & -2 & 1
\end{array}\right]
$$

be vectors in \mathbb{R}^{3} with the standard inner product. Let W be the subspace of \mathbb{R}^{3} spanned by $\left\{v_{1}, v_{2}\right\}$. A basis for W^{\perp} is
A. $\left[\begin{array}{lll}0 & -1 & 3\end{array}\right]$
B. $\left[\begin{array}{lll}5 & -2 & 1\end{array}\right]$
C. $\left[\begin{array}{lll}1 & 3 & 1\end{array}\right],\left[\begin{array}{lll}-1 & -2 & 1\end{array}\right]$
D. $\left[\begin{array}{lll}4 & -1 & -1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$
E. $\left[\begin{array}{lll}-2 & 1 & -1\end{array}\right],\left[\begin{array}{lll}3 & -1 & 1\end{array}\right]$
8. Given the set of linearly independent vectors in \mathbb{R}^{3} with the standard inner product

$$
u_{1}=\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]
$$

Use the Gram Schmidt process to turn it into an orthonromal basis $\left\{w_{1}, w_{2}\right\}$. We have
A. $w_{1}=\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right], \quad w_{2}=\left[\begin{array}{c}4 \\ 4 \\ -3\end{array}\right]$
B. $\quad w_{1}=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ -2 / 3\end{array}\right], \quad w_{2}=\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
C. $w_{1}=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ -2 / 3\end{array}\right], \quad w_{2}=\left[\begin{array}{c}2 / \sqrt{5} \\ 0 \\ 1 / \sqrt{5}\end{array}\right]$
D. $w_{1}=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ -2 / 3\end{array}\right], \quad w_{2}=\left[\begin{array}{c}3 / \sqrt{14} \\ 2 / \sqrt{14} \\ -1 / \sqrt{14}\end{array}\right]$
E. $\quad w_{1}=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ -2 / 3\end{array}\right], \quad w_{2}=\left[\begin{array}{c}2 / \sqrt{13} \\ 0 \\ -3 / \sqrt{13}\end{array}\right]$
9. Determine all values of k such that the vectors $(1,-1,0),(1,2,2),(0,3, k)$ are a basis for \mathbb{R}^{3}.
A. $k=1$
B. $k=2$
C. $k \neq 2$
D. $k \neq 1$
E. $k \neq 3$
10. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$. What is $\left.T\left(\begin{array}{l}1 \\ 2\end{array}\right]\right)$?
A. $\left[\begin{array}{l}4 \\ 6 \\ 3\end{array}\right]$
B. $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
C. $\left[\begin{array}{l}2 \\ 2 \\ 8\end{array}\right]$
D. $\left[\begin{array}{l}1 \\ 5 \\ 4\end{array}\right]$
E. $\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$

